Simplified Description of Complex Structures from Stackings of UGP

J-J. Maguer and G. Courbion¹

Laboratoire des Fluorures, URA CNRS 449, Faculté des Sciences, Université du Maine, 72017 Le Mans Cedex, France

Received April 15, 1996; in revised form July 15, 1996; accepted July 15, 1996

A simplified description of complex structures is proposed. The method consists in defining a geometrical unit of polyhedra, called UGP. Then, a three-dimensional network is built up from simple stackings of these UGP. Cationic sites and additional anionic sites are generated from the stacking of UGP. An explicit formulation "counterions[network]additional ions" summarizes the structure description. This method is applied to numerous structures that involve square antiprisms and can be used for other polyhedra. © 1997 Academic Press

INTRODUCTION

In our preceding publication (1), the fluoride $(H_3O)Yb_3F_{10}, H_2O$ was described utilizing a diamond-type stacking of octahedral units of antiprisms, called UOA_[8], in which the structural description was highly simplified.

A bibliographic search concerning structures involving square antiprisms yielded many examples of complex descriptions based on the connections between polyhedra. By studying these structures, it was always possible to find a simplifying way of description, provided that the basic unit was well defined. The general principle is to define a suitable geometrical unit of polyhedra, called UGP, which is the basis of the simple stacking. Then the resulting threedimensional network of UGP, considered as a stacking of spheres, generates sites of variable coordination in which counterions are located. Moreover, anionic sites, located at the center of the UGP or due to the particular geometry of the vacant space between the UGP, may be filled by supplementary ions. This method allows a summarization of a structural description by the explicit formulation "counterions[network]additional ions," with the appropriate formula unit Z.

In this paper, we report the simplifying descriptions of several structures mainly based on square antiprisms. They are described from UGP whose names are $UOA_{[8]}$ and

 $UOA_{[12]}$ (UOA means octahedral unit of antiprisms and the number between square brackets refers to the vacant anionic cavity located at the center of the UGP; 8 refers to a cube, 12 refers to a cuboctahedron). For the sake of clarity, structures have been classified as a function of their type of stacking: compact, semicompact, and noncompact.

1. STRUCTURES WITH A COMPACT STACKING OF UOA_[8]

1.1. ABA ... Type (Hexagonal Close Packing)

The low-temperature form of β -KYb₃F₁₀ (2) is hexagonal (S.G.: $P6_3mc$, a = 8.067(2) Å, c = 13.203(4) Å, Z = 4) and is based on square antiprisms connected by vertices and edges. The authors noticed the existence of $[Yb_6F_{32}]^{14-}$ clusters, but their description was based on layers involving only three antiprisms (half of an UOA_[8]). In fact, the c/a ratio (1.637) is very close to the ideal value $(2\sqrt{2/3} = 1.633)$ for a hexagonal close packing. As can be seen in Figs. 1a and 1b, this compound exhibits compact layers of UOA[8] superimposed along c, according to an ABA... stacking. Each UOA_[8] has 12 neighboring UOA_[8] (3 + 6 + 3 along c)linked by vertices. Two vertices are common to two UOA_[8]. Thus, the formulation of the three-dimensional network is Yb_6F_{20} ($Yb_6F_8F_{24/2}$), with Z = 2, and this phase is actually a hexagonal close packing (h.c.p.) of UOA_[8]. The A and B layers are presented in Figs. 2a and 2b, with an equivalent drawing from spheres. The calculated radius $(R = a_{\rm H}/2)$ for an UOA_[8] in 12 coordination is equal to 4.04 Å. The h.c.p. network generates four sites of four-fold coordination and two sites of six-fold coordination. Half of the first sites are occupied by the $K_{(2)}^+$ ions, whose anionic coordination is (4 + 12) F⁻ (tetrahedral close coordination + cage). The second sites are not occupied, but the $K_{(1)}^+$ ions are situated near them with an anionic coordination of (3 + 12) F⁻ (truncated tetrahedral close coordination + cage). In summary, β -KYb₃F₁₀ is an h.c.p. of UOA_[8], with K⁺ ions situated in cavities of the network. Its formulation is $K_2[Yb_6F_{20}]$, with Z = 2.

Another example of this type stacking is given by $Zr_3F_8O_2(3)$, for which the c/a ratio is equal to 1.628

¹ To whom correspondence should be addressed.

FIG. 1. Perspective view of the ABA ... layers in β -KYb₃F₁₀ (a) from UOA_[8] and (b) from spheres.

(S.G.: $P6_3mc$, a = 7.771(5) Å, c = 12.49(1) Å, Z = 4). This compound is based on ZrF_6O_2 square antiprisms. According to our method of description, these antiprisms share edges in order to form $Zr_6(F_4O_4)F_{24}$ UOA_[8] linked only by

fluorinated vertices. This leads to a neutral three-dimensional network: $Zr_6(F_4O_4)F_{24/2} = [Zr_6(F_4O_4)F_{12}]^0$. Tetrahedral and octahedral sites of the h.c.p. of UOA_[8] are free. The formulation is thus $[Zr_6F_{16}O_4]$, with Z = 2.

FIG. 2. (Left) Layers of β -KYb₃F₁₀ viewed along [001)]. (a) Layer A centered on z = 0.36 (0.11 < z < 0.61) (K_1 : 0 0 0.49, K_2 : $\frac{2}{3}$ $\frac{1}{3}$ 0.24). (b) Layer B centered on z = 0.86 (0.61 < z < 1.11) (K_1 : 0 0 0.99, K_2 : $\frac{1}{3}$ $\frac{2}{3}$ 0.74). (Right) The same layers from spheres (the positions of vacant sites are given).

1.2. ABC ... Type (Cubic Close Packing)

Starting from the radius of an UOA_[8] in the h.c.p. of β -KYb₃F₁₀(R = 4.04 Å), one can expect that the cell parameter of a cubic close packing (c.c.p.) of UOA[8] should be $a_c = 2R\sqrt{2} = 11.41$ Å. The cell parameter of the high-temperature form γ -KYb₃F₁₀ (4) (S.G.: *Fm*3*m*, *a* = 11.431 Å, Z = 8) is close to this value. We have therefore reconsidered the description of this structure: this cubic phase is effectively based on UOA_[8], centered on the $4a (0 \ 0 \ 0)$ position. As can be seen in Figs. 3a and 3b, this structure corresponds to a compact stacking of UOA_[8] linked by vertices. Each UOA_[8] is connected to 12 neighboring UOA_[8]. The formulation of the three-dimensional network is again Yb_6F_{20} , with Z = 4. Thus, 8 four-fold coordination sites and 4 sixfold coordination sites are present. The K⁺ ions (8c: $\frac{1}{4} \frac{1}{4}$ $\frac{1}{4}$) occupy the tetrahedral sites. Their anionic coordination is also tetrahedral (4 F^- at 2.57 Å, plus 12 F^- at 3.16 Å). Octahedral sites are free. The formulation of the structure is then $K_2[Yb_6F_{20}]$, with Z = 4. One can also consider this structure like an Li2S anti-fluorite type for which $[Yb_6F_{20}]^{2-}$ stands for S^{2-} and K^+ stands for Li⁺.

It is noticeable that the six-fold coordination sites correspond to the center of an empty cuboctahedral cavity built up from six antiprisms connected by vertices. Therefore, this cuboctahedron is the center of another octahedral unit of antiprisms, called **UOA**_[12], whose formulation is M_6X_{36} . Two views of an UOA_[12] are given in Figs. 4a and 4b. The structure of γ -KYb₃F₁₀ can then be described from UOA_[12]. Indeed, each vertex of an UOA_[12] is common to three neighboring UOA_[12]. The formulation of the Yb₆F₂₀

three-dimensional network can be retrieved by the following relation: $Yb_6F_{36} \rightarrow Yb_6F_{12}F'_{24/3} \equiv Yb_6F_{20}$. Thus, a c.c.p. of edge sharing $UOA_{[12]}$ is observed by a $\frac{1}{2}$ 0 0 translation from the c.c.p. of vertex sharing $UOA_{[8]}$. The tetrahedral sites generated by the c.c.p. of $UOA_{[12]}$ are identical to the previous ones and are occupied by the K⁺ ions.

Such M_6X_{36} clusters have been extensively used in the description of anion excess fluorites by Bevan *et al.* (17). They were already observed in γ -KYb₃F₁₀ by Laval and Frit (5), but a simple description based on a c.c.p. of UOA_[12] (neither from UOA_[8]) was not retained. The use of a c.c.p. of vertex sharing UOA_[8] is probably a more convenient way to understand the structure of γ -KYb₃F₁₀. Then, two compounds based on the same packing, BaCaLu₂F₁₀(6) and PbZr₃F₆O₄(7), are described below using this simplifying method.

For BaCaLu₂F₁₀ (S.G.: *Fm3m*, a = 11.366(2) Å, Z = 8), a statistical Ca_{1/3}Lu_{2/3} distribution is observed on the 24*e* position. The formula of the UOA_[8] formed by six [Ca_{1/3}Lu_{2/3}F₈] antiprisms is Ca₂Lu₄F₃₂. This leads to a [Ca₂Lu₄F₂₀]⁴⁻ three-dimensional network. Every tetrahedral site is occupied by the Ba²⁺ ion (8*c* position). Octahedral sites of the network — or cuboctahedral anionic cavities — are free. The formulation of this compound is then **Ba₂[Ca₂Lu₄F₂₀]**, with Z = 4.

A strict order between the O^{2-} and F^{-} anions is observed in PbZr₃F₆O₄ (S.G.: *Fm3m*, *Z* = 8, *a* = 10.926(6) Å). Anionic cubes (center of the UOA_[8]) are built up from O²⁻ ions (32*e*), whereas cuboctahedra (center of the UOA_[12]) are built up from F⁻ ions (48*f*). Therefore, ZrF₄O₄ antiprisms and Zr₆O₈F₂₄ UOA_[8] are observed, leading to

FIG. 3. Perspective view of γ -KYb₃F₁₀ (a) from UOA_[8] and (b) from spheres (large and small black circles correspond to octahedral and tetrahedral sites, respectively).

FIG. 4. An UOA_[12] M_6X_{36} (a) along a pseudo-fourfold axis and (b) along a pseudo-ternary axis.

a $[Zr_6O_8F_{12}]^{4-}$ 3D network. Every tetrahedral site of the c.c.p. of UOA_[8] is occupied by Pb²⁺ ions whose coordination remains tetrahedral (4O²⁻ at 2.61 Å, plus 12F⁻ at 3.02 Å). The formulation of this compound is Pb₂[Zr₆O₈F₁₂], with Z = 4.

The alloy $Cr_{23}C_6$ (8) (S.G.: Fm3m, a = 10.65 Å, Z = 8) can also be described by a c.c.p. of C_6Cr_{32} UOA_[8], leading to a C_6Cr_{20} network. Both tetrahedral sites and octahedral sites — or cuboctahedral cavities — are occupied, respectively, by $Cr_{(2)}$ (8*c* position) and $Cr_{(1)}$ (4*a* position). The formula is then $Cr_2[C_6Cr_{20}]Cr$, with Z = 4. This description seems us more convenient than that based on UOA_{[121}C₆Cr₃₆ (18).

The following examples are based on semicompact and noncompact stackings of $UOA_{[12]}$ or $UOA_{[8]}$.

2. STRUCTURES WITH A SEMICOMPACT STACKING OF UOA_[12]

2.1. AA'A... Type (Primitive Hexagonal Packing)

The basic polyhedron of PbZr₆F₂₂O₂ (5) (S.G.: $P6_3/mmc$, a = 7.504(4) Å, c = 15.008(7) Å, Z = 2) is a ZrF₇O antiprism. From our method of description, the UOA_[12], Zr₆F₃₀O₆ are formed by vertice connections of 6 antiprisms. The central cuboctahedral cavity is built up from 12 F⁻. As can be seen in Fig. 5, each UOA_[12] is connected by 12 edges to 6 neighboring UOA_[12]. Thus, compact layers of UOA_[12] are observed at z = 0 and $z = \frac{1}{2}$. According to the 6_3 axes, these layers are superimposed along c and connected by vertices, leading to a semicompact stacking. The coordination of each UOA_[12] is then 1 + 6 + 1. The

FIG. 5. (001) projection of the compact layers of $UOA_{[12]}$ in $PbZr_6F_{22}O_2$ (left) Layer A (z = 0). (Right) Layer A' ($z = \frac{1}{2}$).

coordination of the O^{2-} and F^{-} anions are equal to 2 and 3, respectively. The formulation of the network is then $Zr_6F_{12}F_{18/2}O_{6/3}$ or $[Zr_6F_{21}O_2]^-$. In this compound, the occupation of the prismatic sites of the network is perfectly ordered. For this reason, a doubling of the c parameter is necessary (c/a = 2.000), and this structure corresponds to an AA'A... type stacking. In the $P6_3/mmc$ space group, the available prismatic sites are situated in the $2d\left(\frac{1}{3}\frac{2}{3}\frac{3}{4},\frac{2}{3}\frac{1}{3}\frac{1}{4}\right)$ and $2c\left(\frac{1}{3}\frac{2}{3}\frac{1}{4},\frac{2}{3}\frac{1}{3}\frac{3}{4}\right)$ positions. Pb²⁺ ions only occupy the 2d position (see Fig. 6) and are responsible for the doubling of c. The charge equilibrium between the $[Zr_6F_{21}O_2]^-$ network (Z = 2) and the Pb²⁺ cations is obtained by the presence of a fluorine anion within the cuboctahedral cavities of the $UOA_{[12]}$. In fact, this fluorine is not located in the center of the cavity, but is statistically distributed on two sites (4e). The exact formulation of this compound is then $Pb[Zr_6F_{21}O_2]F$, with Z = 2.

The same structural type is observed in $CsU_6F_{25}(9)$ (S.G.: $P6_3/mmc$, a = 8.2424(4) Å, c = 16.412(2) Å, Z = 2). U₆F₃₆ UOA_[12] are formed by six UF₈ antiprisms. The three-dimensional network resulting from the AA'A stacking of compact layers of UOA_[12] has the formulation $[U_6F_{23}]^+$. Half of the prismatic sites are occupied by the Cs⁺ ions. The c parameter is then doubled (c/a = 1.991). Two F⁻, situated inside the cuboctahedral cavity of the $UOA_{[12]}$, ensure the charge equilibrium. In this case, the distance between the two equivalent positions of fluorine is large enough to allow for a full occupancy of the sites ($d_{\rm F-F} = 2.5$ Å). As Brunton noticed (9), we may consider that these additional F^- are part of the coordination number of U⁴⁺, which is then equal to 9. Thus, its coordination polyhedron corresponds to an antiprism capped on a square face. The explicit formulation of CsU_6F_{25} is finally $Cs[U_6F_{23}]F_2$, with Z = 2.

2.2. ABC ... Type

The ninefold coordination of the Th⁴⁺ ions in the fluoride α -KTh₆F₂₅ (10) (S.G.: $R\overline{3}m$, a = 8.313(2) Å, c = 25.262(4) Å, Z = 3) is a tricapped trigonal prism of F⁻. It is also possible to consider that the coordination of Th⁴⁺ is a square antiprism capped on a square face, although the distance from the additional anion to the thorium (2.481(7) Å) is smaller than the maximum Th-F distance of the antiprism (2.541(5) Å). Then, α -KTh₆F₂₅ can be described with ThF₈ square antiprisms linked by vertices in order to form a Th₆F₃₆ UOA_[12]. As in the examples of PbZr₆F₂₂O₂ and CsU₆F₂₅, compact layers of UOA_[12], in which each $UOA_{[12]}$ is linked by 12 edges to 6 $UOA_{[12]}$, are observed. With respect to the rhombohedral symmetry, the layers of $UOA_{[12]}$, centered on the 3b position (1/3 2/3 1/6, 0 0 1/2, 2/3 1/3 5/6), are connected by vertices according to a semicompact ABC type packing. In this case, the c/a ratio is equal to 3.039. The formulation of the three-dimensional network is $Th_6F_{12}F_{18/2}F_{6/3}$ or $[Th_6F_{23}]^+$ (Z = 3). Figure 7 shows the idealized semicompact ABC stacking along c, and a (001) projection of the compact layers of $UOA_{[12]}$. The K^+ ions (000) occupy the octahedral sites of the network and are coordinated to 12 fluorine anions. Two F⁻ situated within the cuboctahedral cavities of the UOA_[12] ensure the charge balance. The formulation of this compound is then K[Th₆F₂₃]F₂, with Z = 3.

2.3. ABA ... Type (Body Centered Packing)

From our method of description, Th₆F₂₄, H₂O (11) (S.G.: 14/m, a = 9.194 Å, c = 11.553 Å, Z = 2) is built up from Th₆F₃₆ UOA_[12]. In this case, each UOA_[12] is linked by edges to four neighboring UOA_[12]. This leads to semicompact layers of UOA_[12], at z = 0 and z = 0.5 (Figs. 8a and 8b). The layers are superimposed along c and connected by

 $\mathbf{x} \begin{bmatrix} \mathbf{y} \\ -\mathbf{y} \end{bmatrix} = - \begin{bmatrix} \mathbf{y} \\ -\mathbf{y} \end{bmatrix}$

FIG. 6. AA'A stacking in $PbZr_6F_{22}O_2$ (black circles represent Pb^{2+}).

FIG.7. (Left) Semicompact ABC stacking in α -Th₆F₂₅. (Right) View of the compact layers (black circles represent octahedral sites).

FIG. 8. (001) projection of the semicompact layers of $UOA_{[12]}$ in Th_6F_{24} , H_2O (a) at z = 0 and (b) at z = 0.5.

vertices according to an ABA ... stacking. The coordination of an UOA_[12] is 4 + 4 + 4 (see Fig. 9). Therefore, a Th₆F₁₂F_{24/2} or $[Th_6F_{24}]^0$ neutral network is created. The formulation is then $[Th_6F_{24}]H_2O$, with Z = 2. The anionic coordination of the water molecules, situated in $0 \ 0 \ and \frac{1}{2} \frac{1}{2} \frac{1}{2}$ within the layers, is perfectly cubic. This cube is connected by edges to four antiprisms and connected by faces up and down along *c* to two antiprisms. We may consider that these six antiprisms correspond to another type of UOA_[8], whose formulation is M_6X_{40} $(M_6X_8X_{4*6}X_{2*4})$.

3. STRUCTURES WITH A NONCOMPACT STACKING OF UOA_[12]

3.1. ABC ... *Type*

The compound $Pb_8Y_6F_{32}O$ (12) (S.G.: $R\overline{3}$, a = 10.817(2) Å, c = 19.942(5) Å, Z = 3) can be described from

FIG. 9. Perspective view near [010] of the ABA stacking in Th_6F_{24}, H_2O .

our method by noncompact layers of Y₆F₃₆ UOA_[12] centered on the following positions: $\frac{1}{3}\frac{2}{3}$ 0.17, 0 0 0.50, and $\frac{2}{3}\frac{1}{3}$ 0.83. These are exactly the positions of a compact ABC packing, but the UOA_[12] are not connected in the layers (see the A, B, and C layers in Fig. 10). As can be seen in Fig. 10d, the $UOA_{[12]}$ share edges in the c direction of the packing. Only one edge is common to two UOA_[12]. Each $UOA_{[12]}$ is connected to six neighbors (three up + three down) according to an octahedral type. By these connections, a three-dimensional $Y_6F_{12}F_{12}F_{12/2}$ or $[Y_6F_{30}]^{12-}$ network is created (Z = 3). The positions of the $Pb_{(1)}^{2+}$ cations (6c: 0 0 0.26121(3)) are very close to the positions of the tetrahedral sites of the network: 0 0 0.249. Additional $Pb_{(2)}^{2+}$ cations (18f position, z = 0.08) and fluorine anions $F_{(6)}$ (6c position, z = 0.136) are situated within the layers. In fact, $F_{(6)}$ anion is coordinated to four Pb^{2+} cations in a tetrahedral way. As can be seen in Fig. 10b, the $[FPb_4]^{7+}$ tetrahedra occupy the available space of the noncompact layers of $UOA_{[12]}$ (the tetrahedra are not connected to the layers). However, the resulting $[(FPb_4)_2Y_6F_{30}]^{2+}$ network is not balanced. The charge equilibrium is obtained by the presence of O^{2-} anions (3a: 0 0 0) situated in the octahedral sites of the network of UOA_[12], that is, between two successive layers. The coordination of this O^{2-} anion is made of eight fluorine anions according to a cubic symmetry. The detailed formula of $Pb_8Y_6F_{32}O$ is finally $(FPb_4)_2[Y_6F_{30}]O$, with Z=3.

The same ABC stacking of noncompact layers of UOA_[12] can be used for the description of Nd₁₄Cl₃₂O (13) (S.G.: $R\overline{3}$, a = 12.980 Å, c = 24.835 Å, Z = 3). Indeed, [CINd^{II}₄]⁷⁺ tetrahedra are situated within a [Nd^{III}₆Cl₃₀]¹²⁻ network. In this compound, the O²⁻ anions are reported to be situated within the cuboctahedral cavities of the UOA_[12]. The detailed formula of this compound is (CINd₄)₂[Nd₆Cl₃₀]O, with Z = 3.

FIG. 10. (001) projections of Pb₈Y₆F₃₂O. (a) Layer A at z = 0.17. (b) Layer B at $z = \frac{1}{2}$, with the (FPb₄)⁷⁺ tetrahedra. (c) Layer C at z = 0.83. (d) View of the ABC stacking near [110].

3.2. Diamond Type

 $(H_3O)Yb_3F_{10},H_2O$ is the main example from which has been elaborated our method of description of complex structures from UGP (see the preceeding publication). It can be simply described by a diamond network of Yb_6F_{32} $UOA_{[8]}$ leading to a Yb_6F_{20} network. The hydronium ions and the water molecules are situated within the tunnels. The detailed formulation is $(H_3O)_2[Yb_6F_{20}],2H_2O$, with Z = 8.

The chlorofluoride $Sr_{10}Al_2F_{25}Cl$ (14) (S.G.: $Fd\bar{3}m$, a = 16.4209(3) Å, Z = 8) provides an example of nonconventional UOA_[12]. Indeed, the coordination of $Sr_{(2)}$ is a distorted antiprism having only one square face. Two triangular faces substitute for the second square face. However, 6 distorted antiprisms are connected by vertices around a cuboctahedral cavity made of 12 fluorine anions. The resulting Sr_6F_{36} UGP can be called UOA_[12] on the condition that the letter A stands for "distorted antiprisms."

A chlorine anion is situated within the cuboctahedral cavities of the UOA_[12]. The position of Cl⁻ (8a: 0 0 0, $\frac{3}{4} + \frac{1}{4} + \frac{3}{4}$) clearly indicates that the structure is a diamond type stacking of UOA_[12]. Each UOA_[12] is surrounded by 4 neighboring UOA_[12] in a tetrahedral way. Two neighboring UOA_[12] share six vertices by six edges. Each distorted SrF₈ antiprism has two free vertices. The formulation of the network is $Sr_6F_{6/2*4}F_{12}$ or Sr_6F_{24} , with Z = 8. Eight tetrahedral sites of the diamond stacking (position $8b: \frac{1}{2} \frac{1}{2}$ $\frac{1}{2}, \frac{1}{4}\frac{3}{4}\frac{1}{4}$) are occupied by additional F⁻ anions. Their coordination is made of 4 Sr²⁺₍₁₎, leading to (FSr₄)⁷⁺ tetrahedra. The $A1^{3+}$ cations are situated in the center of an octahedron of F⁻ anions generated by the Sr₆F₂₄ network. Sr₁₀Al₂F₂₅Cl is then a diamond stacking of distorted Sr_6F_{36} UOA_[12] whose cuboctahedral cavities are occupied by a chlorine anion. All the tetrahedral sites of the network are occupied by FSr₄ tetrahedra. The detailed formulation of this compound is (FSr₄)[Sr₆F₂₄]Al₂Cl, with Z = 8.

					-		-			
Compound	Basic polyhedron	UGP	Layers	Type of stacking	Network	Position of the cations	Av [12]	ailable [8]	sites [6]	Formulation
$\begin{array}{l} \mathbf{H_{3}OYb_{3}F_{10},H_{2}O} \\ Fd3m Z = 16 \\ a = 15.3263(2) \text{ Å} \end{array}$	YbF ₈ antiprism	Yb ₆ F ₃₂ UOA _[8]		Diamond	$[Yb_6F_{20}]^{2-}$ $Z = 8$	H ₃ O ⁺ : center of the hexagons	× □ × H ₂ O: in the cages		× the	$[M_{6}X_{20}]$ (H ₃ O) ₂ [Yb ₆ F ₂₀], 2H ₂ O Z = 8
β - KYb₃F₁₀ $P6_{3}mc$ Z = 4 a = 8.067(2) Å c = 13.203(4) Å	YbF ₈ antiprism	$\begin{array}{c} Yb_6F_{32}\\ UOA_{[8]} \end{array}$	Compact layers of UOA _[8]	h.c.p (ABA) c/a = 1.637	$[Yb_6F_{20}]^{2-}$ Z = 2	2 K ⁺ : in half of the tetrahedral sites 2 K ⁺ : near the tetrahedral sites	×		×	$[M_{6}X_{20}] \\ K_{2}[Yb_{6}F_{20}] \\ Z = 2$
Zr3F8O2 P63mc Z = 4 a = 7.771(5) Å c = 12.49(1) Å	ZrF_6O_2 antiprism	$\begin{array}{c} Zr_{6}(F_{4}O_{4})F_{24} \\ UOA_{[8]} \end{array}$	Compact layers of UOA _[8]	h.c.p. (ABA) c/a = 1.628	$\frac{\left[\mathrm{Zr}_{6}\mathrm{O}_{4}\mathrm{F}_{16}\right]^{0}}{Z=2}$		×		×	$\begin{bmatrix} M_{6}X_{20} \\ [Zr_{6}(F_{4}O_{4})F_{12}] \\ Z = 2 \end{bmatrix}$
γ - KYb₃F₁₀ Fm3m Z = 8 a = 11.431 Å	YbF ₈ antiprism	$\begin{array}{c} Yb_{6}F_{32} \ UOA_{[8]} \\ or \ Yb_{6}F_{36} \\ UOA_{[12]} \end{array}$	Compact layers of UOA _[8]	c.c.p. (ABC)	$[Yb_6F_{20}]^{2-}$ $Z = 4$	8K ⁺ : in the tetrahedral sites			×	$\begin{bmatrix} M_6 X_{20} \\ K_2 [Y b_6 F_{20}] \\ Z = 4 \end{bmatrix}$
BaCaLu₂F₁₀ Fm3m Z = 8 a = 11.366(2) Å	$\begin{array}{c} Ca_{1/3}Lu_{2/3}F_8\\ antiprism \end{array}$	$\begin{array}{c} Ca_{2}Lu_{4}F_{32} \\ UOA_{[8]} \\ or \ Ca_{2}Lu_{4}F_{36} \\ UOA_{[12]} \end{array}$	Compact layers of UOA _[8]	c.c.p.	$\begin{bmatrix} Ca_2Lu_4F_{20} \end{bmatrix}^{4-}$ $Z = 4$	8 Ba ²⁺ : in the tetrahedral sites			×	$\begin{bmatrix} M_6 X_{20} \end{bmatrix}$ Ba ₂ [(Ca ₂ Lu ₄)F ₂₀] Z = 4
PbZr₃F₆O₄ Fm3m Z = 8 a = 10.926(6) Å	ZrF_4O_4 antiprism	$\begin{array}{c} Zr_{6}O_{8}F_{24} \\ UOA_{[8]} \\ \text{or } Zr_{6}F_{12}O_{24} \\ UOA_{[12]} \end{array}$	Compact layers of UOA _[8]	c.c.p.	$[Zr_6O_8F_{12}]^{4-}$ Z = 4	8 Pb ²⁺ : in the tetrahedral sites			×	$\begin{bmatrix} M_6 X_{20} \end{bmatrix}$ $Pb_2[Zr_6O_8F_{12}]$ $Z = 4$
$Cr_{23}C_6$ Fm3m Z = 8 a = 10.65 Å	CCr ₈ antiprism	$\begin{array}{c} C_6 Cr_{32} \ UOA_{[8]} \\ or \ C_6 Cr_{36} \\ UOA_{[12]} \end{array}$	Compact layers of UOA _[8]	c.c.p.	$\begin{bmatrix} C_6 Cr_{20} \end{bmatrix}$ $Z = 4$	8 Cr: in the tetrahedral sites	• 4 Cr		×	$\begin{bmatrix} M_6 X_{20} \end{bmatrix}$ Cr ₂ [C ₆ Cr ₂₀]Cr Z = 4
PbZr₆F₂₂O₂ $P6_3/mmc$ $Z = 2$ a = 7.504(4) Å c = 15.008(7) Å	ZrF ₇ O antiprism	$Zr_6F_{30}O_6$ UOA _[12]	Compact layers of UOA _[12]	AA'A $c/a = 2.000$	$\begin{bmatrix} Zr_6F_{21}O_2 \end{bmatrix}^-$ $Z = 2$	Pb ²⁺ : in half of the prismatic sites	• 1 F ⁻	×	×	$\begin{bmatrix} M_6 X_{23} \end{bmatrix}$ Pb[Zr_6F_{21}O_2]F Z = 2
$\begin{array}{l} \mathbf{CsU_{6}F_{25}} \\ P6_{3}/mmc Z=2 \\ a=8.2424(4) \text{ \AA} \\ c=16.412(2) \text{ \AA} \end{array}$	UF ₈ antiprism	$\begin{array}{c} U_6F_{36}\\ UOA_{[12]}\end{array}$	Compact layers of UOA _[12]	AA'A c/a = 1.991	$\begin{bmatrix} U_6 F_{23} \end{bmatrix}^+$ Z = 2	Cs ⁺ : in half of the prismatic sites	• 2 F ⁻	×	×	$\begin{bmatrix} M_6 X_{23} \\ Cs[U_6 F_{23}]F_2 \\ Z = 2 \end{bmatrix}$
$\begin{array}{l} \alpha \text{-KTh}_{6}\text{F}_{25} \\ R\overline{3}m Z = 3 \\ a = 8.313(2) \text{ Å} \\ c = 25.262(4) \text{ Å} \end{array}$	ThF ₈ antiprism	$\begin{array}{c} Th_6F_{36}\\ UOA_{[12]}\end{array}$	Compact layers of UOA _[12]	ABC semi-compact $c/a = 3.039$	$\begin{bmatrix} Th_6 F_{23} \end{bmatrix}^+$ $Z = 3$	K ⁺ : in the octahedral sites	• 2 F ⁻	×	×	$ \begin{bmatrix} M_6 X_{23} \\ K[Th_6 F_{23}]F_2 \\ Z = 3 \end{bmatrix} $
$\begin{array}{l} {\bf Th_6F_{24}, H_2O} \\ I4/m Z=2 \\ a=9.194 \ {\rm \AA} \\ c=11.553 \ {\rm \AA} \end{array}$	ThF_8 antiprism	$\begin{array}{c} Th_6F_{36}\\ UOA_{[12]}\end{array}$	Semi- compact layers of UOA _[12]	ABA	$\begin{bmatrix} Th_6 F_{24} \end{bmatrix}^0$ $Z = 2$			• 2 H ₂ C	×)	$[M_{6}X_{24}]$ [Th ₆ F ₂₄]H ₂ O Z = 2
$ Sr_{10}Al_2F_{25}Cl Fd3m Z = 8 a = 16.4209(3) Å $	SrF ₈ distorted antiprism	$\begin{array}{c} Sr_6F_{36}\\ UOA_{[12]} \end{array}$		Diamond	$[Sr_6F_{24}]^{2-}$ Z = 8	2 Al ³⁺ in octahedral sites: $[Al_2Sr_6F_{24}]^{6-}$ F ⁻ in tetrahedral sites $(FSr_4)^{7+}$ tetraedra	● Cl ⁻	×	• 2 Al ³⁺	$[M_6X_{24}]$ (FSr ₄)[Sr ₆ F ₂₄]Al ₂ Cl $Z = 8$
$ Pb_8Y_6F_{32}O R\overline{3} Z = 3 a = 10.817(3) Å c = 19.942(5) Å $	YF ₈ antiprism	$\begin{array}{c} Y_6F_{36}\\ UOA_{[12]} \end{array}$	Non- compact layers of UOA _[12]	ABC	$[Y_6F_{30}]^{12} - Z = 3$	8 Pb ²⁺ + 2F ⁻ in the layers: two [FPb ₄] ⁷⁺ tetrahedra		• O ²⁻	×	$[M_{6}X_{30}]$ (FPb ₄) ₂ [Y ₆ F ₃₀]O Z = 3
$Nd_{14}Cl_{32}O$ $R\bar{3} Z = 3$ a = 12.980 Å c = 24.835 Å	Nd ^{III} F ₈ antiprism	$\frac{Nd_6^{III}F_{36}}{UOA_{[12]}}$	Non- compact layers of UOA _[12]	ABC	$[Nd_6Cl_{30}]^{2^-}$ Z = 3	(ClNd ^{II}) ⁷⁺ tetrahedra	• O ²⁻		×	$[Nd_6X_{30}]$ $(ClNd_4)_2[Nd_6Cl_{30}]O$ $Z = 3$

 TABLE 1

 Characteristics of the Structures Described from Simple Stackings of UGP (UOA[8] or UOA[12])

Note: Available sites: [12], anionic cuboctahedron; [8], anionic cube; [6], anionic octahedron. Codes: •, occupied site; [], vacant site; ×, does not exist.

FIG. 11. (001) projection of $K_3Nb_8O_{21}$. (a) The UOO_[6] layers are noncompact (additional NbO₆ octahedra are located in vacant space between the UOO_[6]. (b) View of the AA'A stacking along *c* (vacant sites are shown by black circles).

4. A FURTHER EXAMPLE

Our method of description can be extended to other types of UGP. For example, from six MX_6 octahedra connected by vertices and edges, an octahedral unit of octahedra is created whose center is an anionic octahedron. In agreement with our preceding notations, this M_6X_{24} block can be called UOO_[6]. This kind of UGP is observed in the oxide $K_3Nb_8O_{21}$ (S.G.: $P6_3/mcm$, a = 9.153(4) Å, c =12.066(4) Å, Z = 2), which is a member of the $A_3M_8O_{21}$ family (A = Ba, K; M = Nb, Ti) (15). The basic polyhedron is an $[NbO_6]$ octahedron, leading to a $[Nb_6O_{24}]$ UOO_[6]. Non compact layers of UOO[6] are observed perpendicular to the c axis, as can be seen in Fig. 11a. These layers are connected by vertices along c and superimposed according to an AA'A type stacking. A [Nb₆O₂₁] network built up from infinite chains of UOO_[6] is observed. The K⁺ ions are found near the fourfold coordination sites situated in $\frac{1}{2}$ 0 $\frac{1}{4}$ (see Fig. 11b). For geometrical reasons, their position is $x \approx 0.6 \ 0 \frac{1}{4}$ (6g), and their anionic coordination becomes 10 + 3 (tricapped pentagonal prism). The two other Nb atoms are situated in an anionic octahedral site generated by a vacant space between the $UOO_{[6]}$. It must be noted that the central octahedral cavity of the UOO_[6] is not occupied. The explicit formulation of this compound is then $K_3[Nb_6O_{21}]Nb_2$, with Z = 2.

5. CONCLUSION

Three points can be retained from our description of complex structures by means of UGP.

The first is that our method gives a simplifying and didactic view of complex structures. The required conditions are to define the UGP (from polyhedra connections) and to establish the type of stacking of layers of UGP (except for diamond). A structure description is given by an

explicit formulation "counterions[network]additional ions." Table 1 summarizes the given examples; the UGP are mainly $UOA_{[8]}$ or $UOA_{[12]}$ built up from MX_8 antiprisms.

The second point concerns the possibility of using the formulation as a predictive tool for synthesis experiments. Some experiments have already been performed in the case of $Cs[U_6F_{23}]F_2$. Indeed the substitution $Cs^+ + U^{4+} \rightarrow Ba^{2+} + Ln^{3+}$ leads to the family $Ba[U_5LnF_{23}]F_2(Ln = La$ to Lu) (16). Obviously the neutral network $[U_5LnF_{23}]$ could exist without additional charge, but the usual ninefold coordination of U^{4+} would not be reached. Perhaps the presence of a chlorine ion in the cuboctahedral cavity, instead of two fluorine anions, would be sufficient to stabilize the surroundings of the uranium; the formulation of the new phase would be $Cs[U_5LnF_{23}]Cl$. From this point of view, numerous syntheses may be attempted.

Finally, the third point is related to the idea that solid state compounds could obey a scale law. For a given stacking, the unit cell parameters depend only on the size of the elementary UGP. This idea is well illustrated for the diamond type stacking, in the compounds C(diamond), β -SiO₂ (ideal), (H₃O)Yb₃F₁₀, H₂O, and Sr₁₀Al₂F₂₅Cl. For these species, the basic units are successively the carbon atom [C], the tetrahedron [SiO₄], the UOA_{[81} [Yb₆F₃₂], and the UOA_[12] [Sr₆F₃₆]. Similarly, the cubic cell parameters are respectively 3.57, 7.16, 15.33, and 16.42 Å.

As a general conclusion, we can say that the use of UGP to describe complex structures is a possible method to state how simple "nature" can really be.

REFERENCES

- J. J. Maguer, M. P. Crosnier-Lopez, and G. Courbion, J. Solid State Chem. 128 (1997).
- S. Aléonard, J. C. Guitel, Y. Le Fur, and M. T. Roux, *Acta. Crystallogr.* B 32, 3227 (1976).

- 3. R. Papiernik and B. Frit, Rev. Chim. Min. 21, 321 (1984).
- M. Labeau, S. Aléonard, A. Védrine, R. Boutonnet, and J. C. Cousseins, Mater. Res. Bull. 9, 615 (1974).
- 5. J. P. Laval and B. Frit, Rev. Chim. Min. 20, 368 (1983).
- 6. A. Védrine and D. Trottier, Acta. Crystallogr. B 35, 1536 (1979).
- A. Mikou, J. P. Laval, B. Frit, and J. Senegas, *Rev. Chim. Min.* 22, 115 (1985).
- A. L. Bowman, G. P. Arnold, E. K. Stroms, and N. G. Nereson, Acta. Crystallogr. B 28, 3103 (1972).
- 9. G. Brunton, Acta. Crystallogr. B 27, 245 (1971).
- 10. G. Brunton, Acta. Crystallogr. B 28, 144 (1972).

- 11. A. Cousson and M. Pages, Acta. Crystallogr. B 35, 1763 (1979).
- 12. A. Dib and S. Aléonard, J. Solid State Chem. 64, 148 (1986).
- 13. U. Löchner, Thesis, University of Karlsruhe (1980).
- 14. A. Hemon and G. Courbion, J. Solid State Chem. 81, 293 (1989).
- D. Groult, J. M. Chailleux, J. Choisnet, and B. Raveau, J. Solid State Chem. 19, 235 (1976).
- 16. A. Mikou, J. P. Laval, and B. Frit, Rev. Chim. Min. 24, 315 (1987).
- 17. D. J. M. Bevan, O. Greis, and J. Strähle, *Acta. Crystallogr. A* **36**, 889 (1980).
- 18. H. Nyman and S. Andersson, Acta. Crystallogr. A 35, 305 (1979).